
Un
pu

he
d w

ork
ing

dra
ft.

No
t fo

ist
rib
uti
on
.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Teaching Undergraduate So�ware Engineering
Using Legacy Code

Phill Conrad
phtcon@ucsb.edu
UC Santa Barbara

Santa Barbara, California, USA

Andrew Lu
alu@ucsb.edu

UC Santa Barbara
Santa Barbara, California, USA

ABSTRACT
This experience report describes the design and implementation
of an undergraduate software engineering course centered around
working with legacy code. Students in this course contribute to a
code base that has been handed down from a previous o�ering of
the same course, and is then passed down to the students in the next
o�ering of the course. We review the literature describing the gap
between students’ preparation coming out of undergraduate com-
puting programs, and the skills they are expected to demonstrate
in entry-level software development jobs. We then describe how
our course seeks to bridge each of those gaps. Finally, we describe
the challenges of delivering a course centered around legacy code
projects, and re�ect on our e�orts to meet those challenges.

CCS CONCEPTS
• Social and professional topics ! Software engineering edu-
cation.

KEYWORDS
software engineering education, legacy code
ACM Reference Format:
Phill Conrad and Andrew Lu. 2023. Teaching Undergraduate Software Engi-
neering Using Legacy Code. ,

, 7 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Ever since Begel and Simon reported on the struggles of novice
developers at Microsoft [2, 3] in 2008, many authors have followed
up to take note of the ways in which recent computing graduates
often struggle in their �rst software development job. These studies
are often accompanied by suggestions of ways in which software
engineering courses may be modi�ed to help bridge this gap.

In this experience report, we describe our e�orts to implement
many of these suggestions in the context of a 10-week undergrad-
uate software engineering course with enrollments of around 72
students per term. Our course design is centered around a unify-
ing theme: providing students with the opportunity to work with
legacy code. When the course is in steady state, each time the course

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.

.
- - - - 0

https://doi.org/XXXXXXX.XXXXXXX

is o�ered, the focus of the course is preparing students to make
contributions to a base of code that has been handed down to them
by the students in a prior instance of the same course.

This design �ows directly from one of the key recommendations
of Begel and Simon’s work, namely that instructors provide students
“a large pre-existing code base to which they must �x bugs (injected
or real) and write additional features”. In this paper, we survey
the related work (starting with Begel and Simon) to characterize
the gap between student preparation and industry needs. We then
describe our design, and ways in which it addresses this gap. We
then re�ect on the challenges of delivering a course in this format.

2 RELATEDWORK
We highlight three areas of related work: (1) work that examines
the gap between students’ preparation and the needs of industry,
(2) work that looks at incorporating legacy code into software
engineering courses, and (3) work that explores design issues in
project-based courses.

2.1 The Skills Gap
Previous work has explored the the gap between student’s prepa-
ration and the tasks they are expected to perform in their �rst
job—and this work has often suggested the very approaches that
we are taking in the course described in this experience report.

In the mid 2000s, Begel and Simon [2, 3] studied eight novice
developers during their �rst six months at Microsoft and concluded
that while “university computer science curricula provide [novice
software developers] with adequate design and development skills,
their communication, collaboration, and orientation skills are not
as well addressed.” They also concluded that “many of the problems
they have typically have a root cause in poor communication skills
and social naïveté.”

In 2013 Rademacher and Walia [25] conducted a structured lit-
erature review examining the areas where “graduating students
... [fell] short of the expectations of industry or academia”. Like
Begel and Simon, they found gaps in students preparation in soft
skills, but they also uncovered gaps in technical preparation as well,
including design, testing, and con�guration management tools.

Exter [10] performed a 2014 study of designers/developers of
educational software, and found gaps in "testing, maintaining code
over time, use of source code control and development tools... com-
munication, critical thinking and problem solving". The participants
in this study suggested that it would help if instructors could "bring
existing large-scale real-world applications and infrastructures into
the curriculum". Exter also noted this (emphasis added):

2022-08-29 00:28. Page 1 of 1–7.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
Phillip Conrad
DRAFT of work under review; provided for UKICER 2022 RIPPA participants only; please DO NOT DISTRIBUTE

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conrad and Lu

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

One of the more unique �ndings in this study was
the stress participants placed on real-world experi-
ences of signi�cant duration beginning early in the
program and continuing throughout it (larger than
a typical one or two semester capstone). These au-
thentic, large-scale project based experiences would
ideally o�er students the chance to engage with tools
and techniques used in practice, interact with cross-
disciplinary teams, and develop critical thinking and
problem solving skills. Signi�cant structural changes
would be necessary to allow for this type of experience
within most undergraduate programs.

Exter goes on to describe some of the structural changes under-
taken at various institutions: (1) a four-semester long “Software
Studio” sequence [23], (2) a service-learning program that students
can participate in for up to eight semesters [8], (3) a four-year cur-
riculum integrated with work experiences [7]. Later e�orts include
work by Carmichael et al. on four-year curriculum that is integrated
with paid work in industry [5]. Such structure change may be infea-
sible for many programs; we show a way these types of experiences
can be incorporated, at least to some extent, without signi�cant
structural changes to the academic program.

In 2018, Craig et al. [9] reported the results of semi-structured
interviews with recent college graduates, and structured their �nd-
ings around six themes—we use these six themes in Section 4.

More recently, between 2019 and 2021, Groeneveld et al. per-
formed a structured literature review [15], a survey of course syllabi
looking to see which soft skills were taught [13], a Delphi study
to determine what soft skills are valued by experts in Software
Engineering [14], and �nally an analysis of the three prior stud-
ies plus eight follow up interviews to really zero in on the best
characterization of the gap [16]. They identi�ed the three biggest
gaps as: “devoting oneself to continuous learning, being creative
by approaching a problem from di�erent angles, and thinking in a
solution-oriented way by favoring outcome over ego.”

Many other recent papers have echoed this theme of the gap
between students preparation and employers needs [20, 28, 29],
emphasizing that this is far from a solved problem.

2.2 Using Legacy Code in Courses
The Humanitarian Free and Open Source Software Project [4, 21] is
a framework in which students work on real-world projects that ad-
dress humanitarian needs, where the code base may span multiple
course o�erings. This framework o�ers many of the same advan-
tages as the course design we present in this experience report—two
aspects in particular are the use of a real code base that students
contribute to, and an emphasis on authenticity. Indeed, Nascimento
et al. [22] speci�cally looked at whether HFOSS projects help to
bridge the preparation gap for industry, and found that they did.

Another open source project approach, UCOSP [17] matches stu-
dents with open source projects and mentors that are professional
developers. Three pillars of the program are that students work on
real projects, with real users, and are guided by real (professional)
mentors. A study of student surveys from this program shows that
among the elements students value from this approach is the expo-
sure to complex systems, non-green�eld code (legacy code), real

development processes, code review, reasoning about “real, novel
requirements”.

One disadvantage of both the UCOSP and HFOSS approaches is
the need to build and maintain relationships with external stake-
holders (i.e., the consumers of HFOSS software, the professional
developers that maintain the software repositories using in UCOSP).
In addition to being time-consuming, this places additional exter-
nal constraints on instructors. Our approach tries to achieve many
of the bene�ts of these approaches while avoiding some of the
complexities of dealing with external entities.

2.3 Design Issues in Project-Based Courses
Richards [26] presents a literature survey of ten design questions
regarding project-based courses, and suggests that the answer to all
but one (optimal group size) is “it depends”1—as with many complex
designs questions, there are tradeo�s rather than clear prescriptions.
Assessment of software projects is an issue that is particularly
di�cult, and about which much has been written, particularly in
the context of capstone courses [11, 12, 18, 30, 31]. As we discuss
in Section 5, while we have settled on a particular approach to
assessment, we recognize that it has strengths and weaknesses.

3 DESIGN OF OUR COURSE
There are four main principles that guide the design of the course:

• Authenticity: Where possible, we make the software devel-
opment experience as authentic as possible. This includes
mirroring industry practice as closely as possible, and build-
ing software that will actually be used.

• Minimizing Cost: When using professional tools, we try
to limit ourselves to the "free tier" of those tools and/or to
tiers that are free to veri�ed educational users.

• Scalability: Our course enrollments are currently 72 per
o�ering, but we will face pressure to increase enrollments.

• Sustainability: The course should not place undue burdens
on teaching sta� (instructors, grad TAs, and undergrad TAs).

3.1 Course Structure
The course is divided into two phases: a preparation (on-boarding)
phase (typically 6-8 weeks), and a legacy code project phase (typi-
cally 2-4 weeks).

3.1.1 On-boarding Phase. The On-boarding phase is used to intro-
duce core software engineering concepts such as testing and code
coverage, Agile methodologies, and product management, as well as
technical skills for developing web applications, including Java and
React fundamentals. During the on-boarding phase, students work
in the same teams that they will work in during the project phase;
the di�erence is that during this phase, each team is working on the
same assignment, and the assignments are more “exercises” in vari-
ous aspects of backend and frontend web development (typically,
speci�c skills in isolation) rather than authentic applications.

Even though the code itself may take the form of exercises,
we nevertheless begin to gradually introduce aspects of the Agile
methodology throughout the on-boarding phase, including standups,

1Though, after reading Richards’ discussion of group size, it seems that even that also
“depends”.

2022-08-29 00:28. Page 2 of 1–7.

Phillip Conrad
DRAFT of work under review; provided for UKICER 2022 RIPPA participants only; please DO NOT DISTRIBUTE

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Teaching Undergraduate So�ware Engineering Using Legacy Code

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

the use of Kanban boards, the feature-branch/pull-request (PR)
work�ow, and retrospectives to re�ect on team process.

Instruction during the on-boarding phase uses the �ipped class-
room model; lecture material is the form of either a mini-lecture at
the beginning of a class or made available in a pre-recorded video.
Most class meeting time is devoted to hands-on assignments carried
out in a team context, so that students are able to practice their
communication and collaboration skills.

When the course is o�ered face-to-face (which was true from
2010-2020, and most of the 2021-2022 academic year), we tried to
ensure that the course was scheduled in a classroom in which it was
possible for students to physically arrange themselves into groups.
When teaching was fully remote or hybrid in 2020-2022, we used
Zoom breakout rooms for team work, with one room per team, plus
a number of unassigned "�rst-come �rst-served" breakout rooms;
the latter were used when a team wanted to subdivide further in
order to work on di�erent tasks. Our most recent o�erings have
taken place in a classroom set up speci�cally for group work: each
team sits around a U-shaped table with a large computer monitor
on the wall at one end. This is particularly helpful for hybrid teams;
they can display the Zoom room on the monitor.

3.1.2 Project Phase. The �nal phase of the course is the legacy
code project phase. Course sta� prepare either two or three legacy
code projects, and for each project, they prepare two feature epics.
Each course discussion section has 24 students—four teams of six
students each. Pairs of teams (12 students) in the same discussion
section are assigned a GitHub repository and pair of epics (groups
of related issues) to code in that repository. Students are encouraged
to communicate across teams within their section to coordinate fea-
ture development and remedy bugs and regressions. At least twice
during the project phase, students engage in an Agile retrospective
and agree on a speci�c process improvement that they will try to
implement during the next sprint.

In previous iterations of the course, we constructed one unique
epic per student team to mirror the structure of an actual software
development organization. This hit a brick wall in the Winter 2020
o�ering of this course, when we had two 72-student lecture sections
and 24 student teams. Although we did manage to create 24 unique
epics, it required a level of e�ort on the part of the course sta� that
we recognized as unsustainable. In addition, merging code into the
main branch became a huge bottleneck for the students.

To ensure that our course scales with increasing enrollment,
we now create only two epics per project. While epics are unique
within a discussion section, multiple teams in the course may be
working on the same epic. This has three bene�ts: (1) Workload on
course sta� is reduced. (2) During �nal demos, students are able to
see how di�erent teams approach the same problem. (3) After the
course is completed, sta� can compare each implementation and
construct a composite code base with the best designs as the one
that continues into the next course iteration.

3.2 Project Bootstrapping and Curation
When selecting ideas for legacy code projects, we choose ideas
that are su�ciently functionally complex that students will be able
to continually add new features over multiple years. We focus on
projects where students are the target users; this allows students

to play the role of the customer to contribute new ideas for future
iterations of the product.

Once an idea is selected, course sta� start by building a sepa-
rate minimum viable product (MVP) using the desired tech stack.
This MVP is a bare-bones application that provides the absolute
minimal amount of code needed to demonstrate the stack, while
maintaining a clear, extensible structure for project-speci�c func-
tionality. As our projects are web applications, our MVPs include
features such as OAuth authentication, logging of users in an SQL
database, and sca�olding for getting resources from external APIs.
Recent project MVPs have also included support for component /
API documentation plugins, as well as background jobs to allow for
more complex features. Prior work by Chow et. al. [6] has shown
that students are far more likely to adopt maintenance practices,
such as complete unit test coverage, if the code base starts in a
good state; accordingly, our MVPs include open-source unit testing,
test coverage, mutation testing and linting frameworks. The code
bases we present to students as starting points achieve 100% code
coverage and mutation testing scores, which students are expected
to maintain as they make changes.

3.3 Student Teams
Students are assigned to development teams of at most six students,
and they work in these teams throughout the course. We attempt to
�nalize team assignments before the �rst course meeting so students
can start team activities on day one. We utilize the CATME Team-
Maker software [19] to assign students to teams based on a pre-
survey completed by each student. Criteria used within the pre-
survey include gender—prior work cited in the paper on CATME
suggests avoiding forming teams where an individual is the only
person of their gender—as well as students’ primary operating
system, preferred working style (in-person, hybrid, or online), and
self-assessment of previous Java and React knowledge. Students
are also given the opportunity to express a preference of who they
want to work with—we try to accommodate these requests when
they are mutual and satis�able, but typically, these are with at most
one other person. Thus, even in these cases, there is some degree
to which students do not control the makeup of their teams.

Each student team is also assigned a sta� mentor that is either
a graduate or undergraduate teaching assistant. During the on-
boarding phase, mentors act as the �rst point of sta� contact for
all questions from the team. In the project phase, mentors ful�ll
a more managerial role, answering design-related questions from
students and performing code reviews of PRs.

Team performance over time is assessed using CATME Peer Eval-
uations, where students are given opportunities to anonymously
evaluate the performance of other team members in �ve "teamwork
dimensions" that re�ect the soft skills used in e�ective student
teams [24]. Intermediate peer evaluations conducted before the
end of the course are purely informational—students can give and
receive feedback without impacting a grade. However the �nal
CATME peer evaluation can in�uence each team member’s grade:
an adjustment factor is determined based on the relative student
performance within a team. This adjustment factor is used as a
multiplicative factor in a student’s �nal project grade.

2022-08-29 00:28. Page 3 of 1–7.

Phillip Conrad
DRAFT of work under review; provided for UKICER 2022 RIPPA participants only; please DO NOT DISTRIBUTE

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conrad and Lu

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

3.4 Communication Tools
We use Slack as our primary communication tool within the class.
In addition to special topic help channels, each team has one team
channel that they can freely use to hold team discussions, as well
as the ability to send direct messages (DMs) to other students and
the course sta�. After the �rst day of the course, all course-related
announcements are made within the Slack to encourage students to
continuously monitor the workspace for updates. Furthermore, we
set up a dedicated help queue channel for use during instructional
periods, where students can post a help request to request in-person
assistance from course sta�.

We encourage students to use the o�cial class communications
channel (Slack) rather than setting up their own side-channels (for
example, GroupMe, Discord, etc.). We explain that when students
use the o�cial channel, sta� are able to observe and o�er help when
we see that students are stuck on something where we may be able
to o�er a solution. However, this is only an “encouragement”—we
recognize that we are unable to exert control here, and for that
matter, micromanaging a team’s decisions is contrary to the values
of the Agile development process.

During fully-remote or hybrid instruction, to facilitate remote
work, we use Zoom as our video communication platform. We
speci�cally use the Breakout Rooms feature to give each team their
own individual working space within a course instructional period,
should teams have one or more members participating remotely.

3.5 Flipped Classroom
During both the on-boarding and project phases of the class, we use
a �ipped classroom model, with a speci�c strategy: we set aside one
channel of the Slack workspace as a help-queue. There are existing
tools for managing help queues such as [27], however we found
that a Slack channel served our needs well. We mapped particular
reaction emojis to whether a sta� member was addressing an is-
sue, whether it was complete, or whether a sta� member needed
assistance from another sta�member. One nice feature was that we
had the help-queue slack channel displayed on computer monitors
throughout the classroom, which made it easy for course sta� to
see who needed help and to follow up. We were also able to use
the Slack app on our cell-phones to monitor the queue, and take
responsibility for help requests as they arose.

3.6 Tech Stack
Projects in this course focus on full-stack web development us-
ing the Model-View-Controller design pattern. Our project code
bases consist of two main components: a Java Spring Boot back-
end packaged with Maven and a React frontend packaged with
npm. These are both modern, open-source frameworks that are
well-documented, used in many professional products, and have
widespread community support on developer Q&A forums such
as Stack Over�ow. To assist with backend controller development,
we use Swagger UI as a tool for debugging and documenting our
Spring Boot API routes. Similarly, our frontend utilizes Storybook
to design and document React components. Both of these docu-
mentation tools are able to be statically deployed, allowing for easy
testing and collaboration between members. To assist with user

interface (UI) development, we make use of the Bootstrap UI library
to create a consistent user experience across platforms.

Testing is also a large aspect of this course. Our project code
bases utilize JUnit and Jacoco for Java unit testing and coverage,
and similarly, Jest for React component testing and coverage. Ad-
ditionally, we utilize Codecov, an online code coverage solution
integrated with GitHub that provides a uni�ed view of code cov-
erage that can be tracked over time and used to enforce coverage
thresholds at the code review level. Furthermore, we utilize muta-
tion testing to evaluate the quality of student-developed unit tests,
speci�cally, Pitest for Java mutation coverage and Stryker Mutator
for JavaScript mutation testing.

3.7 GitHub
The main development tool used within this course is GitHub.
While GitHub’s core functionality is to serve as a version control
system for project code bases, GitHub has a number of integrated
tools and project management features designed to facilitate the
development work�ow. Issues provides a platform for students
to document new feature requests and bug reports from product
management exercises. Sta� members can further utilize issues
to create feature epics, which are then assigned to teams in the
legacy code phase. In this phase, teams can visualize and track issue
progress in Projects, which provides a column-based project board
similar to Kanban.

When code development is complete, we utilize Pull Requests
(PRs) to facilitate the code review process. We require students
to receive two approving code reviews before any change can be
merged; for legacy code projects, one of these reviews must come
from a member of the instructional sta�. In addition to human
review, we use GitHub’s Continuous Integration/Continuous Deliv-
ery (CI/CD) system, GitHub Actions, to run the project’s unit test
suites and upload results to Codecov, which will enforce complete
coverage through a status check. We additionally utilize Actions to
build and deploy a static Storybook to GitHub Pages. Finally, we
utilize branch protection rules to restrict student push access to
the primary branch, which enforces a sta� review on any student
pull requests. This gives an opportunity for sta� to evaluate every
student pull request for code correctness and ensure professional
development etiquette is followed.

3.8 Deployment
Projects are deployed using Heroku, a cloud platform for deploying
web applications. For each project, we maintain at least two Heroku
applications - one production deployment and at least one quality
assurance (QA) deployment. As more than one team is assigned to
each project in the legacy code phase of the course, every team will
share one single production deployment managed by the course
sta�, while also maintaining individual team QA deployments. The
production deployment re�ects the latest tested and approved code
set to automatically deploy from a repository’s primary branch.
The QA deployment is a production-like test environment that can
be used to validate changes in the code review phase. These two
phases create a simple development life cycle that can facilitate
feature development across multiple teams.

2022-08-29 00:28. Page 4 of 1–7.

Phillip Conrad
DRAFT of work under review; provided for UKICER 2022 RIPPA participants only; please DO NOT DISTRIBUTE

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Teaching Undergraduate So�ware Engineering Using Legacy Code

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

4 BRIDGING THE GAP
We use the six themes presented in Craig et. al. [9] as a frame-
work for discussing the gap between existing CS pedagogy and
professional development practices. This paper builds on previous
literature outlining common learning barriers for recent graduates
by stating incoming software developers’ shortcomings in terms of
speci�c di�erences between academia and industry.

4.1 What: Well-de�ned vs. Open-ended Scope
Academic assignments in CS courses are often accompanied by
a strict set of requirements to be followed, whereas professional
projects are often ambiguous, with open-ended feature requests.
Our course aims to provide students with an experience of this
ambiguity through a combination of issue grooming exercises and
product management/ownership activities.

Students are �rst introduced to open-ended issues through a
product management activity where they are shown a deployed
version of the project they will inherit in the project phase. As
students are the target users of our legacy code applications, they
are asked to use the app as a normal user and note any issues
encountered or features that would make the application more
valuable. Students are then instructed to share their individual
feedback within their team and consolidate ideas into one feature
document.

These ideas are then aggregated by the course sta� into several
feature epics, which form the basis of the product backlogs assigned
to the students in the project phase. The product backlogs written
by the sta� typically contain a mix of issues that have been well-
groomed with speci�c acceptance criteria (as examples, and to help
students get started quickly), along with higher-level issues that are
more open-ended and deliberately vague. Students must then re�ne
the issue into a speci�c user story with clear acceptance criteria,
while taking into consideration any limitations of the existing code-
base. Through this process, students will come across multiple ways
to approach a feature and will have to juggle design considerations
and their trade-o�s. This may involve a further dive into the code
base or an architectural discussion with a member of the course
sta�.

4.2 When: Short vs. Long Time Span
Academic projects often follow a "one-and-done" approach; they
have a lifespan of a few days or weeks, and upon completion of the
course, they are rarely ever looked at again. Many existing courses
have attempted to address this issue by conducting term-length
(10-15 weeks) green�eld projects, but these are still considerably
shorter than industry projects which often span multiple years.
By contrast, our course project code bases are maintained across
multiple successive iterations of the course.

An initial attempt at establishing such a course structure was to
conduct one initial quarter of student-designed green�eld projects,
and then maintain those as brown�eld projects in future quarters.
We found that student working on their �rst large-scale project
often did not have the necessary design skills to produce a code
base that was maintainable, or to design a product that would be
su�ciently complex to provide a challenge over multiple quarters.

Our current approach, when introducing new legacy code projects,
is the course sta� (instructor and TAs) designs and implements an
MVP with plans for long-term maintenance built-in, including code
structure, complete testing, linting, and documentation, as docu-
mented in Section 3.2. This initial MVP becomes the basis for the
�rst iteration of student work; thus, even from the �rst course itera-
tion, students are working with a legacy code base (albeit a smaller
one than in future iterations). Since sta� are the initial green�eld
developers, sta� are able to create the realistic conditions of work-
ing with a large, matured code base that has constraints on design
and guide students in maintaining these constraints.

4.3 Who: Small Groups vs. Large Teams
Academic green�eld projects are often worked on individually or in
small groups of 4-5 students. However, real-world projects are often
carried out by teams that share a code base with tens or hundreds of
other developers. In our legacy-code based course, students have the
experience of working in a single repository that is shared across
two teams that include 10-12 students. This provides students with
additional experience with the need to communicate across teams
about architectural decisions, and to work to avoid merge con�icts.

4.4 Why: Learning vs. User Needs
Projects in academic courses are typically used to gain hands-on
experience with a particular foundational concept in computer
science. This marks a sharp contrast from industry applications,
which are always designed around addressing speci�c user needs,
which will constantly evolve over time.

We provide students experience with addressing user needs by
intentionally selecting projects where students are the intended
users. Two examples are (1) a web application for searching the
course o�erings of our institution over time, in ways that o�cial
course searches cannot provide, and (2) a simulation game used in
a course in Environmental Chemistry. This allows students to act
as both the customer and the product owner.

4.5 How: Ad-hoc vs. Professional Tools
Because academic projects are often "green�eld" without a need for
long-term maintenance, students are only incentivized to use the
minimal number of tools needed complete the task at hand. Many
courses encourage the use of GitHub, testing, and test-driven devel-
opment (TDD), but usage of such tools is often very shallow (e.g.,
GitHub is often limited to pushing and pulling) and methodologies
are challenging to enforce at an individual level.

We resolve this by incorporating a suite of professional tools to
aid the development of legacy code projects. When choosing our
project tech stack, we look for modern and open-source frameworks
and tools with documented usage in industry. GitHub is taught not
just as a place for housing code; we also take advantage of branching,
issues, pull requests, and a CI/CD pipeline through GitHub Actions.
Furthermore, testing is consistently emphasized as an integral part
of the development process. As discussed earlier, we incrementally
introduce agile practices throughout the on-boarding phase, so that
by the time the project phase begins, students are familiar with
standups, issues, Kanban boards, code reviews, and retrospectives.

2022-08-29 00:28. Page 5 of 1–7.

Phillip Conrad
DRAFT of work under review; provided for UKICER 2022 RIPPA participants only; please DO NOT DISTRIBUTE

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conrad and Lu

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

4.6 How Big: Small vs. Large Systems
As most academic projects are small green�eld code bases that are
worked on in small groups, students often follow a mindset that
they must understand all code that they write. Because such code
bases have no intention to be shared, they often lack professional
styling and structure, and authors have little incentive to perform
refactors, practice good design patterns, and write documentation.
These projects are a sharp contrast from industry code bases, which
are often large in size, iterated on by multiple teams in parallel, and
often include code written by developers who have since left the
organization. This often leads to young developers lacking the skills
to read code and start making contributions in industry positions.

This theme serves as the largest motivator for the use of brown-
�eld legacy code projects. By creating projects that are designed to
be iterated on with each successive course, students gain experi-
ence working in code bases where they don’t have full ownership.
There is an expectation for code to be well-maintained through
code styling and thorough testing. Additionally, students can begin
to appreciate the need to adhere to the existing coding standards,
styles, and patterns in the code base so as to keep it maintainable
for future developers.

Students are also forced to acknowledge that it is often not
possible to deeply understand the entire code base and all of its
dependencies in detail; abstraction is essential to success (as in
real-world software engineering).

5 REFLECTION
Course evaluations show that, overall, students are satis�ed with
the course; in narrative evaluations, they frequently mention they
appreciate the relevance of the skills and knowledge in the course
to their future work in the software industry. The main critiques
are that (1) the course is often not as organized as students would
prefer; this re�ects the fact that this course has been a constant
"work-in-progress" over the past ten years, (2) the students wish
they had more time for the project phase of the course.

From the point of view of the instructional sta�, there have been
several challenges:

5.1 Keeping up with the pace of change in
professional software tools

Each year, there are new versions of Spring Boot, React, Bootstrap,
Java itself, as well as dozens of other tools and systems on which
the course depends. This requires updates to course materials and
code. In addition, over the last decade, practices in software de-
velopment in general, and web development in particular, have
changed rapidly.

5.2 Working towards a scalable and sustainable
course structure

This course has been a labor of love for the lead author, and as such
they have been willing to put many extra hours into the design and
implementation of the course. However, in the long-term, it is not
sustainable to put twice as much e�ort into a particular course as
other courses, nor it is reasonable to expect this level of e�ort from
colleagues that may teach the course in the future. The course is

now manageable with 72 students, but due to enrollment pressures,
we will need to scale to many more students in the future.

5.3 Assessment of student projects
Our approach to assessment of the team projects is one we have
not seen elsewhere. The team is responsible, over the course of
the project, for completing 100 points worth of work. They are
given a “backlog” of issues (in the sense used in the Agile software
development methodology [1]). Each time a member of the team
submits a PR to address one of these issues, it is code reviewed, �rst
by a peer team member, and then by a member of the course sta�.
When any/all issues raised in the code review are addressed, the
PR is merged into the main branch, and points are awarded: 5, 10,
or 20. In this way, the team works towards their project grade. It is
feasible for each team to reach 100 points, provided that they plan
their work well, and are able to solve the issues presented to them.
Teams are also encouraged to propose their own issues, or create
issues for bugs they �nd.

One advantage of this approach is that it allows for feedback and
revision, which is often not the case in other computing courses. A
second advantage is that it is authentic, given that code review is
often a feature of real-world software development environments.

One aspect of this method of assessment may be controversial:
our experience has been that nearly all teams routinely put in
the work necessary to reach the grade of 100%. Some seem to
reach that milestone more easily and quickly than others, but they
all eventually get there. Whether this is a feature or a bug is a
matter of educational philosophy about which instructors may
have reasonable disagreements.

5.4 Small, incremental PRs
It is good practice to make small, incremental commits and small,
incremental pull requests. Regrettably, we have found that some
student teams have a tendency to make large, monolithic commits
and PRs. This results in several problems: (1) These are much harder
to code review. (2) These are much more likely to result in merge
con�icts. (3) The merge con�icts that result are likely to be more
complex and di�cult to resolve. (4) It is much more likely that the
various individuals or teams working on the code base will get out-
of-sync with one another in terms of design decisions. All of these
things are also true of real-world software engineering practice, so
this is a valuable lesson for the students to learn. However, students
and instructors alike tend to be happier when this lesson is not
learned through direct experience of the downsides of the wrong
choice.

6 SUMMARY
In this paper we have described the design of an undergraduate
software engineering course based on legacy code. We brie�y sur-
veyed the literature on the gap between students’ preparation and
the skills/knowledge needed for success in the software industry,
and described how this course design can help to bridge that gap.

ACKNOWLEDGMENTS
This work was supported by the National Science Foundation
(United States), Award number: 1915198

2022-08-29 00:28. Page 6 of 1–7.

Phillip Conrad
DRAFT of work under review; provided for UKICER 2022 RIPPA participants only; please DO NOT DISTRIBUTE

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Teaching Undergraduate So�ware Engineering Using Legacy Code

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

REFERENCES
[1] Agile Alliance. 2022. What is a Backlog? https://www.agilealliance.org/glossary/

backlog
[2] Andrew Begel and Beth Simon. 2008. Novice software developers, all over again.

In Proceedings of the Fourth international Workshop on Computing Education
Research (ICER ’08). Association for Computing Machinery, New York, NY, USA,
3–14. https://doi.org/10.1145/1404520.1404522

[3] Andrew Begel and Beth Simon. 2008. Struggles of new college graduates in their
�rst software development job. In Proceedings of the 39th SIGCSE technical sympo-
sium on Computer science education (SIGCSE ’08). Association for Computing Ma-
chinery, New York, NY, USA, 226–230. https://doi.org/10.1145/1352135.1352218

[4] Grant Braught, John Maccormick, James Bowring, Quinn Burke, Barbara Cut-
ler, David Goldschmidt, Mukkai Krishnamoorthy, Wesley Turner, Steven Huss-
Lederman, and Bonnie Mackellar. 2018. A multi-institutional perspective on
H/FOSS projects in the computing curriculum. ACM Transactions on Computing
Education (TOCE) 18, 2 (2018), 1–31. Publisher: ACM New York, NY, USA.

[5] Gail Carmichael, Christine Jordan, Andrea Ross, and Alison Evans Adnani.
2018. Curriculum-Aligned Work-Integrated Learning: A New Kind of Industry-
Academic Degree Partnership. In Proceedings of the 49th ACM Technical Sym-
posium on Computer Science Education (Baltimore, Maryland, USA) (SIGCSE
’18). Association for Computing Machinery, New York, NY, USA, 586–591.
https://doi.org/10.1145/3159450.3159543

[6] Scott P. Chow, Tanay Komarlu, and Phillip T. Conrad. 2021. Teaching Testing with
Modern Technology Stacks in Undergraduate Software Engineering Courses. In
Proceedings of the 26th ACM Conference on Innovation and Technology in Computer
Science Education V. 1 (Virtual Event, Germany) (ITiCSE ’21). Association for
Computing Machinery, New York, NY, USA, 241–247. https://doi.org/10.1145/
3430665.3456352

[7] Ben Coleman and Matthew Lang. 2012. Collaboration across the Curriculum: A
Disciplined Approach to Developing Team Skills. In Proceedings of the 43rd ACM
Technical Symposium on Computer Science Education (Raleigh, North Carolina,
USA) (SIGCSE ’12). Association for Computing Machinery, New York, NY, USA,
277–282. https://doi.org/10.1145/2157136.2157220

[8] Edward J Coyle, Leah H Jamieson, William C Oakes, et al. 2005. EPICS: Engineer-
ing projects in community service. International journal of engineering education
21, 1 (2005), 139–150.

[9] Michelle Craig, Phill Conrad, Dylan Lynch, Natasha Lee, and Laura Anthony.
2018. Listening to early career software developers. Journal of Computing Sciences
in Colleges 33, 4 (4 2018), 138–149.

[10] M. Exter. 2014. Comparing educational experiences and on-the-job needs of edu-
cational software designers. In Proceedings of the 45th ACM Technical Symposium
on Computer Science Education (SIGCSE ’14). ACM, New York, NY, USA, 355–360.
https://doi.org/10.1145/2538862.2538970

[11] Vivienne Farrell, Graham Farrell, Paul Kindler, Gilbert Ravalli, and David Hall.
2013. Capstone project online assessment tool without the paper work. In
Proceedings of the 18th ACM conference on Innovation and technology in computer
science education (ITiCSE ’13). Association for Computing Machinery, New York,
NY, USA, 201–206. https://doi.org/10.1145/2462476.2462484

[12] Vivienne Farrell, Gilbert Ravalli, Graham Farrell, Paul Kindler, and David Hall.
2012. Capstone project: fair, just and accountable assessment. In Proceedings of
the 17th ACM annual conference on Innovation and technology in computer science
education (ITiCSE ’12). Association for Computing Machinery, New York, NY,
USA, 168–173. https://doi.org/10.1145/2325296.2325339

[13] Wouter Groeneveld, Brett A. Becker, and Joost Vennekens. 2020. Soft Skills: What
Do Computing Program Syllabi Reveal About Non-Technical Expectations of
Undergraduate Students?. In Proceedings of the 2020 ACMConference on Innovation
and Technology in Computer Science Education (Trondheim, Norway) (ITiCSE ’20).
Association for Computing Machinery, New York, NY, USA, 287–293. https:
//doi.org/10.1145/3341525.3387396

[14] Wouter Groeneveld, Hans Jacobs, Joost Vennekens, and Kris Aerts. 2020. Non-
Cognitive Abilities of Exceptional Software Engineers: A Delphi Study. In Pro-
ceedings of the 51st ACM Technical Symposium on Computer Science Education
(Portland, OR, USA) (SIGCSE ’20). Association for Computing Machinery, New
York, NY, USA, 1096–1102. https://doi.org/10.1145/3328778.3366811

[15] Wouter Groeneveld, Joost Vennekens, and Kris Aerts. 2019. Software engineering
education beyond the technical: A systematic literature review. In Proceedings of
the 47th Annual SEFI Conference. SEFI, Budapest, Hungary, 1607–1622.

[16] Wouter Groeneveld, Joost Vennekens, and Kris Aerts. 2021. Identifying Non-
Technical Skill Gaps in Software Engineering Education: What Experts Expect
But Students Don’t Learn. ACM Trans. Comput. Educ. 22, 1, Article 1 (oct 2021),
21 pages. https://doi.org/10.1145/3464431

[17] Reid Holmes, Meghan Allen, and Michelle Craig. 2018. Dimensions of Expe-
rientialism for Software Engineering Education. In Proceedings of the 40th In-
ternational Conference on Software Engineering: Software Engineering Education
and Training (Gothenburg, Sweden) (ICSE-SEET ’18). Association for Computing
Machinery, New York, NY, USA, 31–39. https://doi.org/10.1145/3183377.3183380

[18] Christopher Hundhausen, AdamCarter, Phillip Conrad, Ahsun Tariq, and Olusola
Adesope. 2021. Evaluating Commit, Issue and Product Quality in Team Software
Development Projects. In Proceedings of the 52nd ACM Technical Symposium on
Computer Science Education (Virtual Event, USA) (SIGCSE ’21). Association for
Computing Machinery, New York, NY, USA, 108–114. https://doi.org/10.1145/
3408877.3432362

[19] Richard Layton, M. Ohland, and H. Pomeranz. 2007. Software for Student Team
Formation and Peer Evaluation: CATME Incorporates Team-Maker. In 2007 ASEE
Annual Conference & Exposition. ASEE, Honolulu, HI, 397–402. https://doi.org/
10.18260/1-2--2355

[20] Marcia A Mardis, Jinxuan Ma, Faye R Jones, Chandrahasa R Ambavarapu,
Heather M Kelleher, Laura I Spears, and Charles RMcClure. 2018. Assessing align-
ment between information technology educational opportunities, professional
requirements, and industry demands. Education and Information Technologies 23,
4 (2018), 1547–1584.

[21] Ralph Morelli, Allen Tucker, Norman Danner, Trishan R. De Lanerolle, Heidi
J. C. Ellis, Ozgur Izmirli, Danny Krizanc, and Gary Parker. 2009. Revitalizing
Computing Education through Free and Open Source Software for Humanity.
Commun. ACM 52, 8 (aug 2009), 67–75. https://doi.org/10.1145/1536616.1536635

[22] Debora Maria Coelho Nascimento, Christina von Flach Garcia Chavez, and
Roberto Almeida Bittencourt. 2019. Does FLOSS in Software Engineering Educa-
tionNarrow the Theory-Practice Gap?A StudyGrounded on Students’ Perception.
In Open Source Systems, Francis Bordeleau, Alberto Sillitti, Paulo Meirelles, and
Valentina Lenarduzzi (Eds.). Springer International Publishing, Cham, 153–164.

[23] Tom Nurkkala and Stefan Brandle. 2011. Software Studio: Teaching Professional
Software Engineering. In Proceedings of the 42nd ACM Technical Symposium
on Computer Science Education (Dallas, TX, USA) (SIGCSE ’11). Association for
Computing Machinery, New York, NY, USA, 153–158. https://doi.org/10.1145/
1953163.1953209

[24] MatthewW. Ohland, Misty L. Loughry, David J. Woehr, Lisa G. Bullard, RichardM.
Felder, Cynthia J. Finelli, Richard A. Layton, Hal R. Pomeranz, and Douglas G.
Schmucker. 2012. The comprehensive assessment of team member e�ectiveness:
Development of a behaviorally anchored rating scale for self-and peer evaluation.
Academy of Management Learning & Education 11, 4 (2012), 609–630. Publisher:
Academy of Management Briarcli�Manor, NY.

[25] A. Radermacher and G. Walia. 2013. Gaps between industry expectations and
the abilities of graduates. In Proceeding of the 44th ACM Technical Symposium on
Computer Science Education (SIGCSE ’13). ACM, New York, NY, USA, 525–530.
https://doi.org/10.1145/2445196.2445351

[26] Debbie Richards. 2009. Designing Project-Based Courses with a Focus on Group
Formation and Assessment. ACM Transactions on Computing Education 9, 1
(March 2009), 2:1–2:40. https://doi.org/10.1145/1513593.1513595

[27] Aaron J. Smith, Kristy Elizabeth Boyer, Je�rey Forbes, Sarah Heckman, and
Ketan Mayer-Patel. 2017. My Digital Hand: A Tool for Scaling Up One-to-One
Peer Teaching in Support of Computer Science Learning. In Proceedings of the
2017 ACM SIGCSE Technical Symposium on Computer Science Education (Seattle,
Washington, USA) (SIGCSE ’17). Association for Computing Machinery, New
York, NY, USA, 549–554. https://doi.org/10.1145/3017680.3017800

[28] Anna Stepanova, Alexis Weaver, Joanna Lahey, Gerianne Alexander, and Tracy
Hammond. 2021. Hiring CS Graduates: What We Learned from Employers. ACM
Trans. Comput. Educ. 22, 1, Article 5 (oct 2021), 20 pages. https://doi.org/10.1145/
3474623

[29] Sander Valstar, Caroline Sih, Sophia Krause-Levy, Leo Porter, and William G.
Griswold. 2020. A Quantitative Study of Faculty Views on the Goals of an
Undergraduate CS Program and Preparing Students for Industry. In Proceedings of
the 2020 ACM Conference on International Computing Education Research (Virtual
Event, New Zealand) (ICER ’20). Association for Computing Machinery, New
York, NY, USA, 113–123. https://doi.org/10.1145/3372782.3406277

[30] Maria Vasilevskaya, David Broman, and Kristian Sandahl. 2015. Assessing Large-
Project Courses: Model, Activities, and Lessons Learned. ACM Trans. Comput.
Educ. 15, 4, Article 20 (dec 2015), 30 pages. https://doi.org/10.1145/2732156

[31] Brian R. von Konsky and Jim Ivins. 2008. Assessing the capability and maturity
of capstone software engineering projects. In Proceedings of the tenth conference
on Australasian computing education - Volume 78 (ACE ’08). Australian Computer
Society, Inc., AUS, 171–180.

2022-08-29 00:28. Page 7 of 1–7.

https://www.agilealliance.org/glossary/backlog
https://www.agilealliance.org/glossary/backlog
https://doi.org/10.1145/1404520.1404522
https://doi.org/10.1145/1352135.1352218
https://doi.org/10.1145/3159450.3159543
https://doi.org/10.1145/3430665.3456352
https://doi.org/10.1145/3430665.3456352
https://doi.org/10.1145/2157136.2157220
https://doi.org/10.1145/2538862.2538970
https://doi.org/10.1145/2462476.2462484
https://doi.org/10.1145/2325296.2325339
https://doi.org/10.1145/3341525.3387396
https://doi.org/10.1145/3341525.3387396
https://doi.org/10.1145/3328778.3366811
https://doi.org/10.1145/3464431
https://doi.org/10.1145/3183377.3183380
https://doi.org/10.1145/3408877.3432362
https://doi.org/10.1145/3408877.3432362
https://doi.org/10.18260/1-2--2355
https://doi.org/10.18260/1-2--2355
https://doi.org/10.1145/1536616.1536635
https://doi.org/10.1145/1953163.1953209
https://doi.org/10.1145/1953163.1953209
https://doi.org/10.1145/2445196.2445351
https://doi.org/10.1145/1513593.1513595
https://doi.org/10.1145/3017680.3017800
https://doi.org/10.1145/3474623
https://doi.org/10.1145/3474623
https://doi.org/10.1145/3372782.3406277
https://doi.org/10.1145/2732156
Phillip Conrad
DRAFT of work under review; provided for UKICER 2022 RIPPA participants only; please DO NOT DISTRIBUTE

	Abstract
	1 Introduction
	2 Related Work
	2.1 The Skills Gap
	2.2 Using Legacy Code in Courses
	2.3 Design Issues in Project-Based Courses

	3 Design of our Course
	3.1 Course Structure
	3.2 Project Bootstrapping and Curation
	3.3 Student Teams
	3.4 Communication Tools
	3.5 Flipped Classroom
	3.6 Tech Stack
	3.7 GitHub
	3.8 Deployment

	4 Bridging the Gap
	4.1 What: Well-defined vs. Open-ended Scope
	4.2 When: Short vs. Long Time Span
	4.3 Who: Small Groups vs. Large Teams
	4.4 Why: Learning vs. User Needs
	4.5 How: Ad-hoc vs. Professional Tools
	4.6 How Big: Small vs. Large Systems

	5 Reflection
	5.1 Keeping up with the pace of change in professional software tools
	5.2 Working towards a scalable and sustainable course structure
	5.3 Assessment of student projects
	5.4 Small, incremental PRs

	6 Summary
	Acknowledgments
	References

